Shocked rocks and impact glasses from the El’gygytgyn impact structure, Russia

نویسندگان

  • Eugene P. GUROV
  • Christian KOEBERL
چکیده

available online at http://meteoritics.org 1495 © Meteoritical Society, 2004. Printed in USA. Shocked rocks and impact glasses from the El’gygytgyn impact structure, Russia Eugene P. GUROV1 and Christian KOEBERL2* 1Institute of Geological Sciences, National Academy of Sciences of the Ukraine, 55b Oles Gontchar Street, Kiev 01054, Ukraine 2Department of Geological Sciences, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria *Corresponding author. E-mail: [email protected] (Received 18 July 2003; revision accepted 4 May 2004) Abstract–The El’gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid-Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock-metamorphosed volcanic rocks, impact melt rocks, and bomb-shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt.The El’gygytgyn impact structure is about 18 km in diameter and is located in the central part of Chukotka, arctic Russia. The crater was formed in volcanic rock strata of Cretaceous age, which include lava and tuffs of rhyolites, dacites, and andesites. A mid-Pliocene age of the crater was previously determined by fission track (3.45 ± 0.15 Ma) and 40Ar/39Ar dating (3.58 ± 0.04 Ma). The ejecta layer around the crater is completely eroded. Shock-metamorphosed volcanic rocks, impact melt rocks, and bomb-shaped impact glasses occur in lacustrine terraces but have been redeposited after the impact event. Clasts of volcanic rocks, which range in composition from rhyolite to dacite, represent all stages of shock metamorphism, including selective melting and formation of homogeneous impact melt. Four stages of shocked volcanic rocks were identified: stage I (≤35 GPa; lava and tuff contain weakly to strongly shocked quartz and feldspar clasts with abundant PFs and PDFs; coesite and stishovite occur as well), stage II (35–45 GPa; quartz and feldspar are converted to diaplectic glass; coesite but no stishovite), stage III (45–55 GPa; partly melted volcanic rocks; common diaplectic quartz glass; feldspar is melted), and stage IV (>55 GPa; melt rocks and glasses). Two main types of impact melt rocks occur in the crater: 1) impact melt rocks and impact melt breccias (containing abundant fragments of shocked volcanic rocks) that were probably derived from (now eroded) impact melt flows on the crater walls, and 2) aerodynamically shaped impact melt glass “bombs” composed of homogeneous glass. The composition of the glasses is almost identical to that of rhyolites from the uppermost part of the target. Cobalt, Ni, and Ir abundances in the impact glasses and melt rocks are not or only slightly enriched compared to the volcanic target rocks; only the Cr abundances show a distinct enrichment, which points toward an achondritic projectile. However, the present data do not allow one to unambiguously identify a meteoritic component in the El’gygytgyn impact melt rocks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Shock metamorphism of siliceous volcanic rocks of the El’gygytgyn impact crater (Chukotka, Russia)

The 18-km-diameter El’gygytgyn crater is located on the Chukotka peninsula, northeastern Russia. It represents the only currently known impact structure formed in siliceous volcanics, including tuffs. The impact melt rocks and target rocks provide an excellent opportunity to study shock metamorphism of volcanic rocks. The shockinduced changes observed in porphyritic volcanic rocks from El’gygyt...

متن کامل

Heterotrophic microbial colonization of the interior of impact-shocked rocks from Haughton impact structure, Devon Island, Nunavut, Canadian High Arctic

The polar desert is one of the most extreme environments on Earth. Endolithic organisms can escape or mitigate the hazards of the polar desert by using the resources available in the interior of rocks. We examined endolithic communities within crystalline rocks that have undergone shock metamorphism as a result of an asteroid or comet impact. Specifically, we present a characterization of the h...

متن کامل

El'gygytgyn impact crater, Chukotka, Arctic Russia: Impact cratering aspects of the 2009 ICDP drilling project

The El'gygytgyn impact structure in Chukutka, Arctic Russia, is the only impact crater currently known on Earth that was formed in mostly acid volcanic rocks (mainly of rhyolitic, with some andesitic and dacitic, compositions). In addition, because of its depth, it has provided an excellent sediment trap that records paleoclimatic information for the 3.6 Myr since its formation. For these two m...

متن کامل

Geochemistry of impact glasses from the K/T boundary in Haiti: Relation to smectites and a new type of glass

We have individually analyzed twelve black and seven yellow glasses from the K/T boundary section at Beloc, Haiti, plus three smectite mantles around black glasses. The main chemical differences between black and yellow glasses are higher S, Ca, Mg, Zn, As, Br, Sb, and Au, but lower K, Na, and Si abundances in the yellow glasses. We have found high-CaO yellow glasses with low S contents (0.08, ...

متن کامل

A proposal on behalf of the IUGS Subcommission on the Systematics of Metamorphic Rocks

This work presents the provisional results of the IUGS Subcommission on the Systematics of Metamorphic Rocks in respect to impactites. It is proposed to distinguish between impactites resulting from a single impact (e.g., at terrestrial impact craters) and those resulting from multiple impacts (e.g., lunar rocks or meteorites). The former are subdivided into two major groups: Proximal and dista...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004